SUMMARY OF DISSERTATION

Name of Doctoral candidate: Le Quoc Hung

Dissertation title: Study on chemical constituents and antiproliferative activity against

cancer cell lines of the roots of Salvia miltiorrhiza Bunge (Lamiaceae)

Speciality: Traditional Pharmacy

Code of speciality: 9720206

Name of academic advisors:

- 1. Assoc. Prof. Dr. Phuong Thien Thuong
- 2. Assoc. Prof. Dr. Nguyen Huu Tung

Name of academic institute: Vietnam National Institute of Medicinal Materials Summary of the dissertation:

1. Objectives

- Isolation and structural elucidation of constituents and determination of main tanshinones content in roots of *S. miltiorrhiza*.
- Evaluation of *in vitro* anticancer activity of extracts and isolated compounds from the roots of *S. miltiorrhiza*.

2. Methods

2.1. Scientific name identification

Identification of the scientific name of the plant samples on the basis of the morphological characteristics comparison with key taxonomy of species, varieties of the genus *Salvia* (family Lamiaceae) in taxonomic reference books and the standard specimens. Scientific name of the plant samples was expertised by Vietnamese taxonomic botanists.

2.2. Phytochemical study

- Extraction and isolation of chemical constituents:
- + Extraction of plant materials using ethanol, and subsequently successive partitioning of the extract using increasing polarization solvents (*n*-hexan, ethyl acetate, *n*-butanol).
- + Isolation and purification of compounds by column chromatographic method using silica gel, reverse-phase RP-C₁₈ as adsorbents.
- Structural elucidation of isolated compounds: On the basis of the analyses of physical properties (morphology, melting point), spectroscopic data (MS, NMR), and comparison with the literature data.
- Simultaneous quantification of main tanshinones in roots of *S. miltiorrhiza*: by High performance liquid chromatography (HPLC).

2.3. Biological study

- * Research samples: ethanol extract, and fraction extracts of *S. miltiorrhiza* roots.
- * Determination of antiproliferative activity by MTT assay.
- * The mechanisms of apoptosis
- Cell nuclear morphology analysis by using Hoechst 33258 staining
- DNA fragmentation analysis as indicated by DNA laddering detected using agarose gel electrophoresis.
- Western blot analysis.
- Analysis of the mitochondrial membrane function.

3. Results and Conclusion

3.1. Scientific name identification

- The plant samples were identified as Salvia miltiorrhiza Bunge (Lamiaceae).

3.2. Chemical constituents

- Seventeen compounds were isolated from roots of *S. miltiorrhiza* and identified as dihydrotanshinone I (1), trijuganone C (2), trijuganone B (3), cryptotanshinone (4), tanshinone IIA (5), tanshinone I (6), 7β ,24-dihydroxy ursolic acid (7), 24-hydroxy corosolic acid (8), ursolic acid (9), oleanolic acid (10), maslinic acid (11), asiatic acid (12), iriflophenone-2-O- α -L-rhamnopyranoside (13), rosmarinic acid (14), methyl rosmarinate (15), ethyl rosmarinate (16) và ethyl salvianolate A (17). Among the isolates, 7, 8 and 13 have been found in genus *Salvia* for the first time. Four compounds (11, 12, 16 and 17) have been firstly isolated from species *S. miltiorrhiza*.
- A method was developed for the simultaneous quantification of main tanshinones including tanshinone I (6), tanshinone IIA (5) và cryptotanshinone (4) in roots of *S. miltiorrhiza*. total content of 03 Tan is Sapa 3,695 mg/g, respectively; Ha Giang 4,607 mg/g, Lai Chau 3,490 mg/g; Lam Dong 3,402 mg/g, China 2,052 mg/g..

3.3. Biological activities

- Ethanol and *n*-hexan extracts showed antiproliferative effects on human leukemia cells HL-60.
- Tanshinones (2-6) inhibited the growth of three human leukemia cells HL-60, Jurkat, and U937. Among them, compound 2 exhibited the most potent antiproliferative activity with IC₅₀ values of 6.1; 8.9 and 13.4 μ M, respectively.
- Compounds 7, 9, 10, 13, 15-17 significantly suppressed the growth of human leukemia cells HL-60 with IC₅₀ values ranging from 8.9-26.8 μ M. Compound 13 showed the strongest inhibitory effect with IC₅₀ value of 8.9 μ M.

- Compound **2** exhibited potent antiproliferative activity with IC₅₀ values less than 10 μ M against the colon cancer cells DLD-1 (IC₅₀ 6.1 μ M), COLO 205 (IC₅₀ 7.2 μ M), and Caco-2 (IC₅₀ 8.4 μ M). In addition, **2** significantly inhibited cell growth of colon cancer HCT-15 (IC₅₀ 13.2 μ M), prostate cancer PC-3 (IC₅₀ 11.2 μ M), LNCap FGC (IC₅₀ 13.7 μ M), breast cancer MCF-7 (IC₅₀ 16.7 μ M). Compound **2** had no effect on the proliferation of two normal cell lines WRL 68 and NB1RGB.
- Compound **2** exerted antiproliferative effects on HL-60 cells *via* apoptosis induction mediated by mitochondrial dysfunction and caspase activation.

Hanoi, July th, 2022

ACADEMIC ADVISORS

DOCTORAL CANDIDATE

Assoc. Prof. Dr. Phuong Thien Thuong

Le Quoc Hung

Assoc. Prof. Dr. Nguyen Huu Tung